

On essential pseudo principally-injective modules

R.S. Wadbudhe

Mahatma Fule Arts, Commerce and Sitaramji Chaudhari Science Mahavidyalaya, Warud. Amravati, SGB Uni. Amravati, 444906 [M.S.] INDIA

Keywords: Pseudo-injective module, essential pseudo-injective module, essential –Principally submodule and essential pseudo-Principally-injective module.

Date of Submission: 17 May 2016	Date of Accepted: 22 August 2016

I. INTRODUCTION

Through this paper, by a ring R we always mean as associative with identity and every R-module is unitary. The notion principally injective module was introduced by Camollo [9]. R.Jaiswal and P.C. Bharadwaj studied the structure of essentially pseudo principally injective modules. A submodule K of M is called essential submodule if $K \cap L \neq 0$ for every nonzero submodule L of M. In other words $K \cap N = 0 \Rightarrow K = 0$ (briefly; $K \leq^{e} M$). In this case M is called essential extension of K. A monomorphism $f: K \rightarrow M$ is said to be essential if $\inf \leq^{e} M$. ($S = \operatorname{End}_{R}(M)$ Denotes endomorphism ring of M). An R-module M is said to be principally injective if for each R-homomorphism $\alpha : aR \to M$ such that $a \in R$, extends to R. An R-module M is said to be pseudo injective if for every R-monomorphism $\beta: A \to M$ and $\alpha: A \to M$, there exists $\gamma \in End(M)$ such that $\beta = \gamma . \alpha$ An R-module M is said to be pseudo M- injective if for every submodule A of M, any monomorphism $\alpha : A \to M$ can be extends to a homomorphism $\beta \in Hom(M, N)$. An R-module M is said to be essential pseudo injective if for every sub module A, any essential monomorphism $\alpha: A \to M$ and monomorphism $\beta: A \to M$ there exists $h \in End(M)$ such that $\alpha = h, \beta$. An R-module N is said to be pseudo M-P-injective if for any $s \in S = End(M)$ and every monomorphism from s(M) to N, can be extended to a homomorphism from M to N. An R-module N is said to be essential pseudo M-P-injective if for any principally essential submodule s(M) of M, any monomorphism $f: s(M) \rightarrow N$ can be extended to some $g \in Hom(M, N)$

II. MAIN RESULTS

Proposition.2.1. Let N be a module. Then following statements are equivalent:

1. If N is essential pseudo injective.

2. For every essential monomorphism $\beta: s(M) \to M$ and $\alpha: s(M) \to N$, where N embeds in M, there exists $\gamma \in \text{Hom}_{R}(N, M)$ such that $\beta = \gamma \cdot \alpha$.

3. For every essential monomorphism $\beta: s(M) \to M$ and $\alpha: s(M) \to N$, where N is a submodule of M, there exists $\gamma \in \text{Hom}_{R}(N, M)$ such that $\beta = \gamma.\alpha$.

4. Every essential monomorphism $\varphi: N \to M$ where N is a submodule of M, can be extended to End(M).

Proof. (1) \Rightarrow (2) Let β : s(M) \rightarrow M and α : s(M) \rightarrow N, are essential monomorphisms. There exists $\gamma_1 : N \rightarrow M$. It is easy to check that $\gamma_1.\alpha: s(M) \rightarrow M$ is monic. Then there exists $\gamma_2 \in End(M)$ Such that $\gamma_2\gamma_1.\alpha = \beta$, Since M is essential pseudo injective. Let $\gamma_2\gamma_1 = \gamma: N \rightarrow M$. Then $\beta = \gamma.\alpha$. (2) \Rightarrow (3) \Rightarrow (4) clearly. (4) \Rightarrow (1) Let β : s(M) \rightarrow M and α : s(M) \rightarrow N, be essential monomorphisms. Then α : s(M) \rightarrow Im(α) is an isomorphism, so there exists α^{-1} : Im(α) \rightarrow s(M) such that $\alpha^{-1} \cdot \alpha = 1_{s(M)}$. Then $\beta \cdot \alpha^{-1}$: Im(α) \rightarrow M is monic. Therefore there exists $\gamma \in$ End_R(M) such that $\gamma|_{Im\alpha} = \beta \cdot \alpha^{-1}$, for every $a \in s(M)$, $\gamma \cdot \alpha(a) = \beta \cdot \alpha^{-1} \cdot \alpha(a) = \beta(a)$, i.e. $\gamma \cdot \alpha = \beta$.

Proposition.2.2. Let M_R be an essential pseudo injective module. Then

- 1) Every essential monomorphism $\alpha \in \text{End}_R(M)$ splits.
- 2) For every essential monomorphism $\beta : s(M) \to M$ and $\alpha : s(M) \to s(M)$, There exists $\gamma \in Hom_R(s(M), M)$ such that $\beta = \gamma.\alpha$.
- 3) Every essential monomorphism $\alpha \in Hom_R(M,N)$, where N embeds in M splits.

Proof.

1) Obvious

2) Let $\beta : s(M) \to M$ and $\alpha : s(M) \to s(M)$ be monomorphisms. Then s(M) embeds in M.

So there exists $\gamma \in \text{Hom}_{\mathbb{R}}(s(M), M)$ such that $\beta = \gamma.\alpha$. by (1.1).

3) Let $\alpha \in \text{Hom}_R(M,N)$ be an essential monomorphism. Then for $\alpha : M \to N$ and $1_M : M \to M$, There exists $\beta \in \text{Hom}_R(N,M)$ such that $1_M = \beta . \alpha$ by (1.1).

Proposition.2.3.Let $(U_a)_{a \in I}$ be an indexed set of right R-modules. If $\bigoplus_I U_a$ essential pseudo injective, then the every essential monomorphism $\beta : s(M) \to U_a$ and $\alpha : s(M) \to U_b$ where $a, b \in I$, there exists $\gamma \in \text{Hom}_R(U_a, U_b)$ such that $\beta = \gamma.\alpha$.

Proof. Let $(U_a)_{a \in I}$ be an indexed set of right R-modules. Let $\beta : s(M) \to U_a$ and $\alpha : s(M) \to U_b$ be essential monomorphisms. For $i_a\beta : s(M) \to \bigoplus_I U_a$ and $\alpha : s(M) \to U_b$, where i_a is essential monomorphism from U_a to $\bigoplus_I U_a$ and the images $i_a s(M)$ are in $\bigoplus_I U_a$, there exists $\gamma \ \overline{\gamma} \in \operatorname{Hom}_R(U_b, \bigoplus_I U_a)$ such that $i_a\beta = \overline{\gamma}.\alpha$ by (1.1). Let $\gamma = \pi_a$. $\gamma : U_a \to U_a$. then $\gamma.\alpha = \pi_a$. $\overline{\gamma}\alpha = \pi_a$. $i_a\beta = \beta$.

Corollary.2.1. Every direct summand of essential pseudo module is also essential pseudo injective module.

III. ESSENTIAL PRINCIPALLY PSEUDO-INJECTIVE MODULE

(EPP-injective module)

An R-module M is called essential principally pseudo- injective if each essential monomorphism from an essential principal submodule of M to M can be extended to an endomorphism of M to M.

Let M be an R-module. We Write $l_M(m) = \{m \in M : mr = 0, \forall r \in R\}$ and $r_M(m) = \{r \in R : mr = 0, \forall m \in M\}$ for each $X \subset M$, the fined by right (left) annihilator of x in R is defined by $r_R(X) = \{r \in R : xr = 0, \forall x \in X\}$

 $l_{R}(\mathbf{X}) = \{ \mathbf{r} \in \mathbf{R} : \mathbf{xr} = 0, \forall \mathbf{x} \in \mathbf{X} \}$

 $\mathbf{A}_{\mathbf{m}} = \{\mathbf{n} \in \mathbf{M} : r_{\mathbf{R}}(\mathbf{n}) = r_{\mathbf{R}}(\mathbf{m}), \forall \mathbf{m} \in \mathbf{M}\},\$

 $S_{(\alpha,m)} = \{\beta \in S : ker\beta \cap mR = ker\alpha \cap mR, \ \forall \ m \in M\}$

 $\mathbf{B}_{\mathbf{m}} = \{ \alpha \in \mathbf{S} : \text{ ker} \alpha \cap \mathbf{m} \mathbf{R} = \mathbf{0}, \forall \mathbf{m} \in \mathbf{M} \}.$

Proposition3.1. For a given module M with

 $S = End_R(M)$, the following conditions are equivalent for an element $m \in M$:

1. M is EPP-injective module.

2. $A_m = B_m m$

- 3. If $A_m = A_n$, then $B_m m = B_n n$.
- 4. For every essential monomorphism α : mR \rightarrow M and β : mR \rightarrow M, there exists $\gamma \in \text{End}_{R}(M)$ such that $\alpha = \gamma.\beta$.

Proof. (1) \Rightarrow (2) let M be EPP-injective module. If n is an element, then $A_m = A_{n..}$ Consider the mapping α : mR \rightarrow M defined by $\alpha(mr) = nr$. Let $mr_1 = mr_2$ for all $r_1, r_2 \forall R$, so $mr_1 - mr_2 = 0$

 $\Rightarrow \alpha(m(r_1 - r_2)) = 0 \Rightarrow n(r_1 - r_2) = 0 \Rightarrow nr_1 = n r_2.$ Since M is EPP-injective, so α is monomorphism, can be extended M to M. Then $s(m) = \alpha(m) = n = sm$, where $s \in B_m$. Conversely; If $sm \in B_mm$, then $s \in B_m$ i.e. {kers $\cap mR$ } = 0. It is clear that $r_R(sm) \supseteq r_R(m)$. If $r \in r_R(sm)$, then smr = 0, so $mr \in kers \cap mR = 0$, and $r \in r_R(m) \Rightarrow mr = 0$. Therefore $rR(sm) = r_R(m)$. Then $sm \in A_m$. (2) \Rightarrow (3) Let $A_m = A_n$. Then $A_m = B_mm$ and $A_n = B_nn$. So $B_mm = B_nn$.

(3) \Rightarrow (4) Let α : mR \rightarrow M and β : mR \rightarrow M be essential monomorphisms. Then $r_R(\beta m) = r_R(\alpha m)$. So $A_{\alpha m} = A_{\beta m}$, and $B_{\alpha m} \alpha m = B_{\beta m}\beta m$ by (3). Because {kers1_M $\cap \alpha mR$ } = 0 \Rightarrow 1_M $\in B_{\alpha m}$. Then $\alpha m \in B_{\beta m}\beta m$. There exists $\gamma \in B_{\beta m}$ such that $\alpha = \gamma.\beta$.

(4) \Rightarrow (1) Put $\beta = i_{mR}$ in (4).

Proposition.3.2. Let M be EPP-injective module with $S = End_R(M)$. Then $S_{(\alpha,m)} = B_{\alpha m} \alpha + l_S(M)$.

Proof. If $\beta \in S_{(\alpha,m)}$, then ker $\beta \cap mR = ker\alpha \cap$

mR, for all $m \in M$, Since $r_R(\alpha m) = r_R(\beta m)$.

If $\alpha(m)r = 0$

 $\Rightarrow mr \in ker\alpha \cap mR, = ker\beta \cap mR, so \ \beta(m)r = 0. If \ \beta(m)r_1 = 0 \Rightarrow mr_1 \in ker\beta \cap mR = ker\alpha \cap mR, so \ \alpha(m)r_1 = 0. Thus \ \beta m \in B_{\alpha m} \ \alpha m \ by \ 2.1. This shows \ \beta m = b\alpha m \ for \ all \ b \in B_{\alpha m}. this \ means \ \beta - b\alpha \in l_{\mathcal{S}}(m). \Rightarrow \beta \in b\alpha + l_{\mathcal{S}}(m). Conversely; Let \ b\alpha + s \in B_{\alpha m} \ \alpha + l_{\mathcal{S}}(m), with \ b \in B_{\alpha m}, s \in l_{\mathcal{S}}(m). If \ mr \in ker(b\alpha + s) \cap mR \ \Rightarrow (b\alpha + s)(mr) = b\alpha mr + smr = bb\alpha mr = 0 \Rightarrow \alpha mr \in kerb \cap \alpha mR = 0. So \ mr \in ker\alpha \cap mR. If \ mr_1 \in ker\alpha \cap mR \Rightarrow \alpha mr_1 = 0 \Rightarrow (b\alpha + s)mr_1 = b\alpha mr_1 + smr_1 = bb\alpha mr_1 = 0 \Rightarrow \alpha mr \in kerb \cap \alpha mR = 0. So \ b\alpha + s \in S_{(\alpha,m)}. Hence \ S_{(\alpha,m)} = B_{\alpha m} \ \alpha + l_{\mathcal{S}}(M)$

ACKNOWLEDGEMENT

Author is grateful for the motivation, useful suggestion and helps by the Prof. and head, Dr. R. S. Singh, Dr. H. S. Gour Central University, Sagar, [M.P.] INDIA.

REFERENCES

- [1]. A.K. Chaturvedi, B.M. Pandeya, A.J. Gupta, Quasi pseudo principally injective modules, Algebra Colloq. 16(3) (2009) 397-402.
- [2]. A.K. Chaturvedi, B.M. Pandeya, A.J. Gupta, Modules whose M-cyclics are summand,
- [3]. Int. J. Algebra 3921) (2010) 1045-1049.
- [4]. A.K. Chaturvedi, QP-injective and QPP-injective Modules, Southeast Asian Bull Math. 38 (2014) 191-104.
- [5]. C.C Yucel, A note on ECS-modules, Palestine J. Math. 3(1) (2014) 383-387.
- [6]. F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New-York, 1992.
- [7]. H. Kalita, H.K. Sakiya, Pseudo p- injective modules and k-non singularity, Int. J. Math. Archiv 4(9) (2013) 233-236.
- [8]. S.Wongwai, Small PQ-Principally injective modules, Int. J. Math. Archive -3(3). 2012 962-967.
- [9]. S. Baupradist, H.D. Hai, N.V. Sanh, on pseudo p-injectivity, Southeast Asian Bull Math. 35 (2011) (1) 21-27.
- [10]. V. Camillo, Commutative rings whose principal ideals are annihilators, Portugal Math. 46. (1989) 33 -37.
- W.K. Nicholson, J.K. Park, M.F. Yousif, Principally quasi injective modules, Comm. Algebra 27(4) (1999)1683-1693.
 T. Zhu, Boardo, O.B. injective modules and conserving development of the product of the pro
- [12]. Z. Zhu, Pseudo QP-injective modules and generalized pseudo QP-injective module, Int. Electron. J. Algebra 14(2013) 32-43.